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Abstract

Knowledge about how changes in gene expression are encoded by expression quantitative trait loci (eQTLs) is a key to con-
struct the genotype–phenotype map for complex traits or diseases. Traditional eQTL mapping is to associate one transcript
with a single marker at a time, thereby limiting our inference about a complete picture of the genetic architecture of gene
expression. Here, we implemented an ultrahigh-dimensional variable selection model to build a computing platform that
can systematically scan main effects and interaction effects among all possible loci and identify a set of significant eQTLs
modulating differentiation and function of gene expression. This platform, named iFORM/eQTL, was assembled by forward-
selection-based procedures to tackle complex covariance structures of gene–gene interactions. iFORM/eQTL can particularly
discern the role of cis-QTLs, trans-QTLs and their epistatic interactions in gene expression. Results from the reanalysis of a
published genetic and genomic data set through iFORM/eQTL gain new discoveries on the genetic origin of gene expression
differentiation in Caenorhabditis elegans, which could not be detected by a traditional one-locus/one-transcript analysis
approach.
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Introduction

As activation or inhibition of gene expression causes change in
phenotypic formation, the identification of expression quantita-
tive trait loci (eQTLs) that regulate the pattern of gene expres-
sion is essential for constructing a precise genotype–phenotype
map [1–3]. With the advent and development of various biotech-
nologies, it has become possible that genome-scale marker and
expression data can be generated, providing an important fuel
to systematically study the biological function of all types of cel-
lular components in an organism [4–6]. Several genome-wide
association studies (GWAS) have been initiated to map a com-
plete set of eQTLs for the abundance of genome-wide tran-
scripts whose expression levels are related to biological or

clinical traits [3, 7, 8]. Statistical analysis and modeling are play-
ing an increasing role in mapping and identifying the underly-
ing eQTLs from massive amounts of observed data [9–11].

A typical eQTL mapping approach is to associate a gene tran-
script with a single marker such as single nucleotide poly-
morphism (SNP). By analyzing the significance of all these
markers one by one and adjusting for multiple testing, a re-
searcher can identify significant loci that contribute to variation
of expression by the gene. This marginal approach based on a
simple regression model has been instrumental for the
identification of eQTLs in a variety of organisms [4, 12].
However, there are two major limitations for the results by such
a marginal analysis. First, it does not take into account the
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dependence of different markers, so that a significant associ-
ation detected by one marker may be owing to the other
markers that are linked with it. The marginal marker analysis
cannot separate the confounding effect of eQTLs owing to
marker–marker dependence or linkage [13]. Second, an eQTL
may act through its interaction with other eQTLs and environ-
mental factors. Because of their paramount importance in af-
fecting complex diseases and traits, gene–gene interactions, or
epistatic effects, and gene–environment interactions have been
studied intensively in modern biological and medical research
[14–17].

These two limitations can be overcome by analyzing all
markers and their pairwise interactions simultaneously
through formulating a high-dimensional regression model.
Although it can infer a complete picture of the genetic architec-
ture of gene expression, this endeavor is highly challenged by
the curse of dimensionality, i.e. the number of predictors far ex-
ceeds the number of observations. The past two decades have
witnessed the tremendous development of variable selection
models via penalized least squares or likelihood for high-
dimensional data analysis. The basic principle used to develop
these models is ‘sparsity’, i.e. only a small set of predictors ex-
plain variation in the response. Tibshirani [18] pioneered the
least absolute shrinkage and selection operator (LASSO), which
can select significant predictors and estimate their regression
coefficients at the same time within a high-dimensional setting.
Fan and Li [19] improved this approach in terms of solution
sparsity, model stability and estimation accuracy by proposing
a so-called smoothly clipped absolute deviation approach. Zou
and Hastie [20] further developed the elastic net that resolves
an issue of high pairwise correlations among different variables.
A different approach, named minimax concave penalty by
Zhang [21], was shown to considerably increase the accuracy of
penalized variable selection. When the number of predictors is
considerably larger than the number of samples, Candes and
Tao [22] proposed the Dantzig selector to select the best subset
of variables by solving a simple convex problem. Many methods
possess favorable theoretical properties such as model selection
consistency [23] and oracle properties [24]. However, when the
number of predictors is extremely high, compared with the
number of observations, sure screening is a more realistic goal
to achieve than oracle properties or selection consistency [24,
25]. Sure screening assures that all important variables are iden-
tified with a probability tending to 1, hence achieving effective
dimension reduction without information loss and providing a
reasonable starting point for low-dimensional methods to be
applied.

More recently, Hao and Zhang [26] extended variable selec-
tion approaches to jointly model main and interaction effects
from high-dimensional data. Based on a greedy forward ap-
proach, their model can identify all possible interaction effects
through two algorithms, iFORT and iFORM, which have been
proved to possess sure screening property in an ultrahigh-di-
mensional setting. iFORT first searches for main effects, fol-
lowed by interaction searching, whereas iFORM models main
and interaction effects jointly in a high-dimensional setting. In
this article, we implemented and reformed Hao and Zhang’s
model to build a computational platform for mapping the gen-
etic architecture of eQTL actions and interactions for gene ex-
pression profiles. This so-called iFORM/eQTL platform was
modified to cope with the feature of a genetic mapping or
GWAS design in which molecular markers as genetic predictors
are discrete although some additional continuous predictors
can also be considered. At each marker, there are three distinct

genotypes (i.e. categories), thus a pair of markers form nine
genotype combinations. Classic quantitative genetic theory par-
titions nine genotypic values into the overall mean, and eight
genetic effects, i.e. additive and dominant main effects at each
marker, and additive � additive, additive � dominant, domin-
ant � additive and dominant � dominant interaction effects be-
tween the two markers [27]. Therefore, if the number of
markers is p, a total number of predictors including all main
and two-way interaction terms is 2p2. For a typical moderate-
sized mapping study, in which several thousands of markers
are genotyped on a few hundred individuals, consideration of
pair-wise genetic interactions will quickly make the dimension
of predictors a high one. The dimensionality encountered in a
GWAS study with thousands of thousands of markers on thou-
sands of subjects becomes ultra-high.

By modeling all markers jointly at one time under an organ-
izing framework, iFORM/eQTL can detect all possible significant
eQTLs and their epistasis. An eQTL can be either a cis-QTL, com-
ing from the same physical location as the gene expression, or a
trans-QTL, coming from other areas of the genome. iFORM/eQTL
can more precisely discern these two different types of eQTLs
and their interactions than traditional marginal analysis. By
reanalyzing a published data set collected in a mapping popula-
tion of Caenorhabditis elegans [12], iFORM/eQTL has validated
previous results by the marginal approach, while yielding new
discoveries on the genetic origin of gene expression differenti-
ation, which could not be detected in a traditional way.

iFORM/eQTL platform
Experimental design

An experimental population for genetic mapping includes the
backcross, the F2, both initiated two inbred lines, and a full-sib
family derived from two outcrossing parents. These types of
populations are used specifically for different species. Although
they have different levels of complexities for statistical model-
ing, the genetic dissection of different populations underlies a
similar principle. For the purpose of simplicity, we consider a
backcross design in which there are only two genotypes at each
marker.

Suppose the backcross contains n progeny, each of which is
genotyped by p markers, such as SNPs, distributed over different
chromosomes. The number of SNPs, p, should be large enough
to completely cover the entire genome at an adequate depth so
that we are likely to capture all possible genetic variants. An
increasing body of evidence suggests that significant SNPs asso-
ciated with complex traits or diseases are more likely to be
eQTLs [7]. Hence, the identification of eQTLs is an important
first step toward the genetic dissection of end-point pheno-
types. For this reason, we assume that genome-wide gene tran-
scripts are available for the assumed study population. We also
assume that all progenies are recorded for the same organ by
microarray, leading to expression abundance data of m gene
transcripts. We purport to identify all possible genetic variants
including main effects and interaction effects of SNPs that con-
tribute to each gene transcript.

Adaptation of iFORM procedure

Hao and Zhang [26] formulated an interaction forward selecting
procedure under the marginality principle (iFORM). The marker
and gene transcript data of the study population can be denoted
as ðXi;YiÞði ¼ 1; . . . ;nÞ, which are independent and identically
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distributed copies of (X,Y), where X ¼ X1; :;Xp
� �T is a p-dimen-

sional predictor vector and Y is the response, expressed by a lin-
ear regression model:

Y ¼ b0 þ b1X1 þ � � � þ bpXp þ � (1)

where bs are the coefficients for the genetic effects of each
marker. Like most genome-wide data sets, the number of
markers here grossly outnumbers the number of observations,
i.e. p� n. Therefore, selection procedures would need to be im-
plemented to fit a linear regression model such as (1). We are al-
ready at the point of high-dimensional data, but if we want to
include epistatic effects between different markers as predictors
as well, then it would increase the amount of predictors by
(p þ p2)/2. The resulting linear model would grow to be

Y ¼ b0 þ b1X1 þ � � � þ bpXp þ c11X2
1 þ c12X1X2 þ � � � þ cppX2

p þ �; (2)

where cs are the coefficients for the epistatic effects for all the
quadratic and two-way interactions between the markers. For
convenience, we will assume that the markers and the tran-
scripts are standardized before running the selection procedure.
Therefore, EðXijÞ ¼ 0;VarðXijÞ ¼ 1;EðYiÞ ¼ 0 and VarðYiÞ ¼ 1
ðfori ¼ 1; . . . ;n; j ¼ 1; . . . ;pÞ. Also, the quadratic and two-way
interaction effects will be centered, which we will write as
Zi ¼ . . . ;XikXil � E XikXilð Þ; . . .ð ÞT . By doing so, we eliminate the
need for an intercept in regression model (2). This reduces the
model to the form,

Y ¼ XTbþ ZTcþ � (3)

Some notation that will be used to define the elements of Han
and Zhang’s (2014) iFORM procedure are as follows:

P1 ¼ 1; 2; . . . ;pf g;P2 ¼ fðj; kÞ : 1 � j � k � pg

which are the index sets for the linear and two-way interaction
terms, respectively. The significant main effects for the markers
and their interaction effects are

T 1 ¼ fj : bj 6¼ 0; j 2 P1g; T 2 ¼ fðj; kÞ : bjk 6¼ 0; ðj; kÞ 2 P2g

For any model M, jMj is used to denote the number of pre-
dictors contained in the model. The true model size is indicated
by jT 1j ¼ p0 and jT 2j ¼ q0, or together is denoted by
jT j ¼ d0 ¼ p0 þ q0. For the procedure, three sets will be used
throughout, which are M for the model set, C for the candidate
set of predictors and S for the solution set of predictors cur-
rently selected in the model.

Two principles are used in the selection procedure when
considering interactions as candidates for selection into the
final model. The first principle important to the procedure is
the heredity principle. The strong case of the heredity principle
states that an interaction effect should not be considered unless
both the contributing main effects are in the model [23]. The se-
cond is the principle of marginality. This principle states that it
is inappropriate to model interaction terms when the main ef-
fects contributing to the interaction have been deleted because
their effects become marginal by the inclusion of the interaction
effect. This translates into

cjk 6¼ 0 only if bj; bk 6¼ 0 81 � j; k � p

for model (2). Including both principles during the selection
process allows for dynamically including both main effects and
the quadratic and interaction effects. The quadratic and inter-
action effects can only be considered between the main effects
currently selected into the solution set of the model according
to the discussed principles. A more formal description of the
procedure is given below.

Model selection

The initial step of Hao and Zhang’s [26] iFORM procedure starts
with the empty set for both the initial solution set ðS0Þ and the
initial model set ðM0Þ, S0 ¼ 1 and M0 ¼ 1. The candidate set
contains all main effects at the beginning, C0 ¼ P1, for each of
the markers as a possible eQTL. Typical forward selection pro-
cedures are carried out to start the selection. Each marker is
tested individually using a marker regression. The marker that
results in the lowest residual sum of squares is the marker se-
lected from the candidate set into the solution set as an eQTL.
This is then iterated again for a selection of another marker into
the model set. Once there are at least two main effects selected
into the solution set, under the strong heredity principle, the
quadratic and two-way interactions are then created and placed
into the candidate set as possible eQTLs for selection in the
next step. This process continues selecting main effects or the
newly created quadratic and interaction effects into the solu-
tion set. If another main effect is selected into the solution set,
then the candidate set grows with the creation of all possible
quadratic and two-way interactions of the main effects that are
currently in the solution set. This is continued until a desig-
nated stopping value, say d, is reached. For the number of pre-
dictors placed into the model set from the solution set, the
Bayesian information Criterion was used, i.e.

BIC2ðM̂Þ ¼ logðr̂M̂2Þ þ n�1jM̂jðlogðnÞ þ 2logðd�ÞÞ

where r̂M̂2
is the sample variance for the given model, jM̂j is

the size of the model or the number of predictors selected into
the given model and n is the sample size. The d* ¼ p þ q term is
the number of predictors in the full model, where jP1j ¼ p and
jP2j ¼ q. This was proposed as BIC2 by Chen and Chen [29],
which they derived to help control the false discovery rate in
high-dimensional data situations. They also showed that it was
selection consistent if d* ¼ OðnnÞ for some n > 0. The only differ-
ence between the traditional Bayesian information criterion
(BIC) calculation and the BIC2 is the additional term involving
2logðd*Þ. Ignoring the BIC, the maximum number of steps in the
solution path is of size n. The parameter d controls the overall
length of the solution path. In practice, the exact number of pre-
dictors to include, say d0, in the true model is unknown. We
want to make d large enough to include d0 but not so large as to
fit the model to the point where it becomes oversaturated. Using
the BIC2 should help avoid oversaturation. It is reasonable to as-
sume that d0 is much smaller than n in high-dimensional sparse
regression problems [24]. As this is the case, for the purposes of
our model, d is set to be no larger than n=logðnÞ. Generally, the
BIC2 should reach a minimum, indicating the optimal stopping
point, before the designated stopping value is reached.

Some consideration

A consideration is about the type of coding used for the geno-
types. At any given eQTL, say the jth eQTL, there are two pos-
sible genotypes: QjQj and Qjqj, making the total number of
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possible QTL genotypes in the population 2m. The goal of a gen-
etic model is to relate the 2m possible genotypic values to a set
of genetic parameters, such that these parameters are interpret-
able in terms of main and epistatic effects of the m eQTL. A gen-
etic model is to use orthogonal contrast scales because it is
consistent in the sense that the effect of an eQTL is consistently
defined whether the genetic model includes one, two, three or
more eQTL [28]. The orthogonal contrasts for the genetic model
can be expressed by

xij ¼ � 1
2

if homozygote QjQj;
1
2

if heterozygote Qjqj

� �

Typically, in an inbred-line backcross population, a given
genotype is coded with a 0 and 1. However, there are two draw-
backs to this coding when considering the selection procedures
discussed above. The first issue comes with not including an
intercept in model (2). If this is the case, then each of the pre-
dictors would need to be centered, which yields a coding of �1/2
and 1/2 instead of 0 and 1. Besides meeting the assumptions of
the model that the predictors are centered, it is also beneficial
for the interaction effects. If the coding would remain at 0’s and
1’s, the interaction coding would also consist of 0’s and 1’s. This
could lead to a problem because three of the four scenarios of
epistasis between markers would result in a coding of 0 for the
level in the interaction effect. This has the potential to falsely
skew the data of no additive effect for interactions terms
because of the sparseness of coding. Centering the coding to
(�1/2,1/2) results in an interaction effect being coded as

(�1/4,1/4). This coding occurs for different scenarios for each
of the levels. The coding of �1/4 could arise when the inter-
action is composed of a homozygote interacting with a hetero-
zygote genotype. A coding of 1/4 would arise by either a
homozygote interacting with another homozygote genotype, or
when a heterozygote interacts with another heterozygote
genotype.

Results
Simulation

We conducted simulation studies to test the theoretical prop-
erties of iFORM/eQTL. The response was generated from
model (2) involving 500 genes with a sample size of n ¼ 200
under three possible scenarios: (i) main and epistasis scenario
in which both main and epistatic effects are simulated with
the true b ¼ ð3; 0; 0; 3; 0; 3; 3; 0493Þ; yielding T 1 ¼ f1; 4; 6; 7g and
p0 ¼ 4, and the relevant interactions set to the pairs T 2 ¼ fð1; 6Þ;
ð1; 7Þ; ð4; 7Þ; ð6; 7Þg and q0 ¼ 4 all with cjk ¼ 3 where ðj; kÞ 2 T 2,
(ii) main scenario in which only main effects were simulated
with the true b ¼ ð3; 0; 0; 3; 0; 3; 3; 0493Þ and (iii) weak-main and -
epistasis scenario in which both main and epistatic effects are
simulated with the true b ¼ ð1:1; 0; 0; 1:1; 0; 1:1; 1:1; 0493Þ; yielding
T 1 ¼ f1; 4; 6; 7g and p0 ¼ 4, and the relevant interactions set to
the pairs T 2 ¼ fð1; 6Þ; ð1; 7Þ; ð4; 7Þ; ð6; 7Þg and q0 ¼ 4 all with cjk ¼ 3
where ðj; kÞ 2 T 2. In each scenario, we studied the influence of
different effect values on parameter estimation by using differ-
ent sizes of random error, r ¼ 1, 2 and 3. Note that scenario (iii)
assumes epistatic effects that are larger than main effects so
that this scenario can test how well iFORM functions when its
underlying heredity principle is partly isolated. We did not as-
sume that epistasis occurs between two loci of zero main effects
because this case may not be pervasive (Mackay 2014).

In each of the scenarios, X
0

is were all independently and
identically distributed realizations generated from Binomial
(0.5), and then orthogonal contrasts were used to make each
xij 2 ð�1=2; 1=2Þ. The results were compared with several other
commonly used methods for eQTL mapping. The methods that
were used to model the data were single-marker analysis, for-
ward selection involving only main effects (FS), forward selec-
tion involving all main effects and interaction (FS2) and the
iFORM procedure. Several outcomes were evaluated to compare
across each of the models. The outcomes are separated into
three parts. The first part focuses on the selection of main ef-
fects, the second part focuses on the selection of interaction ef-
fects and the third part is the overall model performance.
Simulations with M¼ 100 replicates were run and the out-
comes considered include

• Convergence Probability (Cov)
P

m¼1
I TT̂ð Þ

M
• Percentage of correct zeros (Cor0)

PM
m¼1

Pp
j¼1

I
� cðbjÞ¼0;bj¼0

�
M p�p0ð Þ½ �

• Percentage of incorrect zeros (Inc0)
PM

m¼1

Pp
j¼1

I
� cðbjÞ¼0;bj 6¼0

�
M p0ð Þ½ �

• Exact Selection probability (Exact)
PM

m¼1
I T ¼T̂ð Þ

M
• The average model size
• Mean Square Error (MSE)
• Adjusted R-square
• Computation Time in seconds

where j is the index of the b coefficient selected in the model.
In simulation scenario (i), iFORM/eQTL was closest to the

simulated data (indicated as Oracle) (Table 1). Single-marker
analysis was conducted on each of the main effects individu-
ally, and the significant markers were then designated as
eQTLs. When comparing single-marker analysis, we can see it
rarely identified the full set of main effects as significant from
the simulated data. Also, no consideration for interactions
could be assessed in single-marker analysis. iFORM/eQTL con-
tains the identified main effects >90% of the time across all
simulations. The procedure also includes interaction selection.
The interaction screening shares a similar success rate where
the interaction effects are correctly selected >90% of the time as
well. Focusing on the computation time, we observed only a few
seconds’ increase, on average, than running single-marker ana-
lysis. The final models selected by iFORM/eQTL had similar ad-
justed R-square values as the Oracle results, on average.
Examining the exact selection percentage, we can see that the
vast majority of the time the correct predictors were selected
and indicated as significant. To compare the interaction screen-
ing effectiveness, forward selection was implemented on both
the main effects and interactions effects. The time it took to cre-
ate the design matrix to implement forward selection was not
included in the computation time.

As can be seen from the results, using forward selection on
the full set of main effects and pair-wise interactions took sub-
stantially longer to run on average than any of the other meth-
ods, including iFORM/eQTL. Another drawback to implementing
forward selection on such a large set seemed to come with
overfitting the model. The selection included the maximum
number of predictors allowed by the designated stopping value
and did not use the BIC criteria for final model selection. This
resulted in 19 additional predictors selected (Table 1). This
increased the adjusted R-square value of the final model; how-
ever, this is suspected because of overfitting the data and not to
be a true prediction of the response.

Scenario (ii) allows us to investigate false-positive rates
(FPRs) of detecting epistasis because the simulated data con-
tains no epistasis. First, it is not surprising that iFORM/eQTL can
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estimate main effects as well as single-marker analysis
(Table 2). Second, FPRs for epistatic detection were estimated
as< 0.05, showing a low probability of identifying any epistasis
if the data has no epistasis. Scenario (iii) shows the power of
iFORM/eQTL for epistatic detection in a situation that deviates
from the strong heredity principle. While single-marker ana-
lysis can only identify main effects, iFORM/eQTL can identify
epistasis even if epistasis takes place between two loci that has
weak main effect (Table 3). The power of epistatic detection in
this case is good, ranging 0.80–0.95.

Similar results were obtained from simulation results with
r ¼ 2 and 3 of the random error. All these simulation studies
show that iFORM/eQTL can well be used as a tool to systematic-
ally search for epistasis in practice.

Real data analysis

Rockman et al. [12] reported an eQTL mapping study of C. elegans
using 208 recombinant inbred advanced intercross lines (RIAIL)

from a cross between the laboratory strain, N2, and a wild iso-
late from Hawaii, CB4856. Abundances of 20000 gene transcripts
were measured by microarray in developmentally synchronized
young adult hermaphrodites of these lines, providing a gen-
ome-wide coverage of C. elegans from WormBase, a public C. ele-
gans genome database. The microarray data was preprocessed
through a normal–exponential convolution background correc-
tion and normalized using quantile standardization. Although
they are closely related, the two strains used for the cross are
considered relatively divergent for C. elegans. The two strains
differ roughly at approximately 1 base pair per 900. Their RIAILs
were genotyped at 1454 ordered SNP markers that cover the
whole genome of C. elegans including five autosomes (denoted
as I–V) and one sex chromosome (denoted as X).

Rockman et al. [12] used a classic interval mapping approach
to detect 2309 eQTLs by testing and scanning associations of
each SNP with each gene transcript over the entire genome.
Rockman et al.’s analysis allowed a rectangular map of eQTL
positions � gene positions to be constructed (Figure 1), from

Table 1. Results of simulation under scenario (i) with r ¼ 1 for the random error with independent predictors

r ¼ 1 Main effects Interaction effects Model

Method Cov Cor0 Inc0 Exact Cov Cor0 Inc0 Exact Size MSE Adj-R2 Time (s)

Single Marker 0 1 0.25 0 NA NA NA NA 3 23.63 0.216 0.824
(0.24) (0.09) (0.028)(0) (0) (0.06) (0)

LASSO 1 0.933 0 0 NA NA NA NA 36.7 1.33 0.851 1.24
(18.5) (0.21) (0.044)(0) (0.037) (0) (0)

FS 0.85 0.953 0.0625 0.85 NA NA NA NA 27 (1.5) 10.23 (1.1) 0.660 (0.027) 3.47
(0) (0.001) (0.09) (0.11)

FS2 1 0.996 0 1 0.95 0.981 0 0 27 0.302 0.989 72.31
(0) (0.001) (0) (0) (0.445) (0.002) (0) (0) (1.43) (1.2) (0.019)

iFORM 0.9 0.999 0.05 0.9 0.9 1 0 0.9 7.55 2.93 0.894 4.08
(0.002) (0.001) (0.0012) (0.125) (0.01) (0) (0) (0.03) (0.126) (0.044) (0.11)

Oracle 1 1 0 1 1 1 0 1 8 1.023 0.965 NA
(0.0441) (0.011)

Note: The standard deviations of the estimates are given in parentheses.

Outcomes include the convergence Probability (Cov)
PM

m¼1I T T̂
� �

=M, percentage of correct zeros identified (Cor0)
PM

m¼1

Pp
j¼1Iðb̂j ¼ 0; bj ¼ 0Þ=½Mðp� p0Þ�, percentage of in-

correct zeros identified (Inc0)
PM

m¼1

Pp
j¼1Iðb̂j ¼ 0; bj 6¼ 0Þ=½Mðp0Þ�, the exact selection probability (Exact)

PM
m¼1I T ¼ T̂

� �
=M, average model size, Mean Square Error for the

model (MSE), the adjusted R-square of the model and the computational time in seconds.

Table 2. Results of simulation under scenario (ii) (testing FPRs for epistasis effects) with r ¼ 1 for the random error with independent predictors

r ¼ 1 Main effects Interaction effects Model

Method Cov Cor0 Inc0 Exact Cov Cor0 Inc0 Exact Size MSE Adj-R2 Time (s)

Single Marker 1.00 1.00 0 0.96 NA NA NA NA 4.04 1.01 0.90 0.824
(0) (0) (0) (0.196) (0.196) (0.048) (0.0125)

LASSO 0 0.932 0.3175 0 NA NA NA NA 34.7 2.61 0.291 1.24
(0) (0.032) (0.127) (0) (16.5) (0.23) (0.102)

FS 1.00 1.00 0 0.976 NA NA NA NA 4.02 0.995 0.899 3.52
(0) (0.003) (0) (0.153) (0.153) (0.053) (0.0123)

FS2 1 1 0 1 0 0.999 0 0 4.01 0.995 0.89 70.5
(0) (0) (0) (0) (0.001) (0) (0) (0.09) (0.052) (0.0122)

iFORM 1 1 0 0.976 0 1 0 0 4.032 1.002 0.89 4.08
(0) (0.001) (0) (0.153) (0) (0) (0) (0) (0.217) (0.0534) (0.0124)

Oracle 1 1 0 1 1 1 0 1 4 1.003 0.898 NA
(0.0526) (0.012)

Note: The standard deviations of the estimates are given in parentheses.

Outcomes include the convergence Probability (Cov)
PM

m¼1I T T̂
� �

=M, percentage of correct zeros identified (Cor0)
PM

m¼1

Pp
j¼1Iðb̂j ¼ 0; bj ¼ 0Þ=½Mðp� p0Þ�, percentage of in-

correct zeros identified (Inc0)
PM

m¼1

Pp
j¼1Iðb̂j ¼ 0; bj 6¼ 0Þ=½Mðp0Þ�, the exact selection probability (Exact)

PM
m¼1I T ¼ T̂

� �
=M, average model size, Mean Square Error for the

model (MSE), the adjusted R-square of the model and the computational time in seconds.
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which one can identify cis-eQTLs on the diagonal and trans-
eQTLs off the diagonal. However, because their association ana-
lysis was conducted individually for each SNP, the detection of
eQTLs was based on the marginal effects of individual eQTLs,
which may lead to two issues being unsolved. First, of those
eQTLs detected for the same gene transcript, some may include
confounded effects by others. Second, the effects of genetic

epistasis may take place but were not detected. By analyzing all
SNPs simultaneously under a single framework, the high-di-
mensional model, iFORM, implemented in this study can more
precisely characterize the genetic machineries underlying vari-
ation in each gene transcript. More specifically, we treat each
transcript as a response with all SNP markers and their inter-
actions as predictors by building a large regression model.

Table 3. Results of simulation under scenario (iii) (weak main effects and epistasis) with r ¼ 1 for the random error with independent
predictors

r ¼ 1 Main effects Interaction effects Model

Method Cov Cor0 Inc0 Exact Cov Cor0 Inc0 Exact Size MSE Adj-R2 Time (s)

Single Marker 0.75 1 0.07 0.49 NA NA NA NA 4.10 1.81 0.39 0.824
(0.432) (0.0012) (0.138) (0.50) (0.86) (0.88) (0.79)

LASSO 0 0.93 0 0 NA NA NA NA 33.55 2.01 0.075 1.24
(0) (0.39) (0) (0) (19.9) (0.141) (0.63)

FS 0.78 1.00 0.07 0.74 NA NA NA NA 3.67 1.82 0.38 3.47
(0.798) (0.096) (0.89)(0.42) (0.0001) (0.149) (0.437)

FS2 0.44 1 0.15 0.44 0.01 1.00 0.60 0.00 3.11 1.85 0.36 72.31
(0.497) (0) (0.203) (0.497) (0.089) (0.001) (0.497) (0) (1.39) (0.172) (0.143)

iFORM 1 0.999 0 0.94 1 1 0 1 8.06 1.004 0.812 4.08
(0) (0.001) (0) (0.23) (0) (0) (0) (0) (0.23) (0.049) (0.029)

Oracle 1 1 0 1 1 1 0 1 8 1.006 0.811 NA
(0.049) (0.0292)

Note: The standard deviations of the estimates are given in parentheses.

Outcomes include the convergence Probability (Cov)
PM

m¼1I T T̂
� �

=M, percentage of correct zeros identified (Cor0)
PM

m¼1

Pp
j¼1Iðb̂j ¼ 0; bj ¼ 0Þ=½Mðp� p0Þ�, percentage of in-

correct zeros identified (Inc0)
PM

m¼1

Pp
j¼1Iðb̂j ¼ 0; bj 6¼ 0Þ=½Mðp0Þ�, the exact selection probability (Exact)

PM
m¼1I T ¼ T̂

� �
=M, average model size, Mean Square Error for the

model (MSE), the adjusted R-square of the model and the computational time in seconds.

Figure 1. The distribution of eQTLs for each transcript abundance phenotype in C. elegans, located at the genomic positions of the transcripts. Those eQTLs on the diag-

onal are cis-eQTLs, whereas those off the diagonal are trans-eQTLs. Adapted from Rockman et al. [12].
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Significant predictors were then selected based on the iFORM
procedure. A final model including both main and interaction
effects can be evaluated by calculating adjusted R-square
values.

Figure 2 illustrates the map of how a particular gene tran-
script is controlled by its eQTLs through main effects and inter-
action effects. For clarity of our presentation, we only chose one
representative gene transcript from each chromosome. For ex-
ample, gene transcript A_12_P103290 located at position
2069088–2069147 of chromosome I was detected to be controlled
by main effects owing to X2_13516256 eQTLs on chromosomes
II and X4_15632637 eQTLs on chromosome IV and
X2_13516256:X4_15632637 interactions between some of these
eQTLs on these two chromosomes.

iFORM/eQTL provides the estimates of each effect (either
main effect or interaction effect), standard errors of each estimate
and the significance tests of each effect. As an example, Table 4
gives the result of how gene transcript A_12_P103290 can be pre-
dicted by its eQTLs and their interactions. It can be seen that the
final predictive model (adjusted R2 ¼ 0.8964) contains 10 markers,
which exert their main effects and/or interaction effects on the
transcript. The identification of these 10 markers should be well
convinced because the previous simulation result (Table 2) sug-
gests that iFORM/eQTL has reasonably low FPRs. The same data
were also analyzed by single-marker analysis and FS, both of
which can only identify a couple of significant main-effect eQTLs
(Table 4), showing lower power for eQTL detection compared
with iFORM/eQTLs. Of the 10 final markers, 7 show significant
main effects (P < 0.05), with several (i.e. X_14636404, X4_15568674,
X4_15632637 and X_14542103) explaining about 5% heritability
(defined as a proportion of genetic variance owing to a predictor
over the total phenotypic variance). Of these final markers, we
identified eight significant epistatic interactions. Each epistasis
accounts for 4.6–5.5% heritability (Table 4).

It is interesting to note that all predictors jointly contribute
to 62.6% heritability for transcript A_12_P103290, of which main
effects account for 26.7% and epistatic effects account for 35.9%.

It is surprising that epistasis contributes to more than one-half
of the heritability. Of the eight epistatic interactions, only one
occurs owing to the interaction between two significant eQTLs,
X_14542103 and X4_13532205 (Table 4). All the remaining ones
are owing to interactions between one significant eQTL and one
nonsignificant marker. Some eQTLs, such as X_14542103 and
X_14636404, produce epistasis with a greater frequency than
others. Despite their involvement in the final predictive model,
some markers were tested to be insignificant in terms of both
main and interaction effects, suggesting that they regulate a
gene transcript in a subtle but important fashion. In summary,
iFORM/eQTL not only provides an estimate of the overall herit-
ability of gene transcript A_12_P103290 (i.e. the sum of individ-
ual heritability explained by each predictor), but also charts a
detailed picture of how each genetic variant contributes to tran-
script variation. In particular, iFORM/eQTL characterizes epista-
sis and its role in trait control and is equipped with a capacity to
retrieve so-called missing heritability [30], a significant issue
arising from current GWAS.

Through analyzing associations between all markers and
each transcript by iFORM/eQTL, we can identify the difference
of cis- and trans-eQTLs for a particular transcript. For example,
of the eQTLs affecting A_12_P103290, we detected that
X1_2068168 is a cis-eQTL, whereas all others are trans-eQTLs
(Table 4). We list the number and distribution of these two types
of eQTLs and the pattern of how they interact with each other
to determine gene transcripts (Table 5). By detecting cis-eQTLs
and trans-eQTLs, iFORM/eQTL detected that genetic interactions
take place mostly between trans-eQTLs.

Discussion

With the recent development of genotyping and sequencing
techniques, the collection of genome-wide genetic and genomic
data from any tissue of an organism has been rendered much
easier and more efficient. The past decade has been a fertile one
for genetic and genomic studies of complex diseases or traits,

Figure 2. Circos plot illustrating the pattern of how a particular gene transcript is regulated by eQTLs on different chromosomes in C. elegans.
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which have now achieved a point at which we can draw a com-
plete picture of genetic architecture for disease or trait forma-
tion and progression by GWAS [17].

Traditional marginal analysis based on simple regression
has been instrumental for the detection of important genetic
variants or quantitative trait loci in a variety of organisms, but a
bottleneck has emerged quickly owing to its limitation in pre-
cisely and comprehensively charting genetic control land-
scapes. Many published GWAS studies are beset with missing
heritability because of their incapacity to detect genome-wide
epistasis, genotype � environment interactions and any pos-
sible other mechanisms [30]. Epistasis is a phenomenon by
which the influence of a gene on the phenotype depends critic-
ally on the context provided by other genes [14]. It has been in-
creasingly recognized that epistasis is an important source for
trait variation [15, 31, 32], so that inclusion of epistasis would
enhance the prediction accuracy of phenotypic performance
and shed more light on the global genetic architecture of trait
control [17]. However, epistasis is extremely hard to detect as an
interaction term, whose inclusion may complicate the inference
of the predictive model [17, 31]. Thanks to recent methodo-
logical progresses in high-dimensional data modeling, we have

been able to implement several cutting-edge statistical models
for systematical detection and characterization of genome-wide
epistasis.

Hao and Zhang [26] proposed a new high-dimensional
model, iFORM, that tackles an issue of interaction selection sim-
ultaneously from a large pool of continuous predictors. This
model is based on forward-selection-based procedures, which
are characteristic of computational feasibility and efficiency.
The authors further proved that the detection of interactions by
iFORM is consistent, even if the dimension increases exponen-
tially for a sample size. As one of the first attempts to introduce
high-dimensional models into genetic studies, we modified and
implemented iFORM to accommodate the discrete nature of
molecular markers. Our simulation studies indicate that the re-
sulting iFORM/eQTL platform can provide reasonably accurate
and precise estimates of genetic main effects and interaction ef-
fects. It shows greater power to detect significant genes and
their interactions, which may not be detected by traditional sin-
gle-marker analysis. Also, although its underlying assumption
is the heredity principle, iFORM/eQTL was found to well detect
epistasis taking place between any two loci that display weak
main effects. This functionality remarkably increases the ap-
plicability of this high-dimensional model to large-scale genetic
data. However, one drawback of iFORM/eQTL is its incapacity to
detect the epistasis of two eQTLs whose main effects are insig-
nificant. A modification to cope with this situation deserves fur-
ther investigation.

We applied iFORM/eQTL to reanalyze gene expression data
in an eQTL mapping study [12]. While our results confirmed
those by the traditional approach, the new model provides
some new findings including new eQTLs and epistasis, thus
allowing a complete set of genetic variants to be characterized.
As an important tool to understand the genetic mechanisms
underlying both complex traits and diseases, eQTL mapping has
been widely used to identify key regulatory pathways toward
endophenotype and end-point phenotypes [1–3, 33]. The eQTLs
displaying significant main effects detected by iFORM/eQTL

Table 5. The distribution and proportion of cis- and trans-QTLs de-
tected by iFORM/eQTL

eQTL type Count Proportion

cis-eQTL 14 0.0024
trans-eQTL 5509 0.9628
cis-eQTL � cis-eQTL 0 0.0000
trans-eQTL � cis-eQTL/cis-eQTL � trans-eQTL 2 0.0003
cis-eQTL � trans-eQTL 196 0.0340

A random sample of 1000 transcripts was used as a response, and iFORM/eQTL

was implemented on each. The number of predictors selected during the pro-

cedure is shown, along with the eQTL type of each of the predictors in relation

to the transcript used as the response.

Table 4. Estimated main and epistatic effects of eQTLs by iFORM/eQTL on gene transcript a_12_P103290 on chromosome I, in a comparison
with the result by traditional single-marker analysis

iForm/eQTL Single-marker analysis Forward select

eQTL Effect SE P-value Heritability Effect SE P-value Effect SE P-value

X1_2068168 (cisQTL) �0.197 0.035 0.000 0.060 �0.210 0.074 0.005 �0.145 0.027 0.000
X2_13516256 �0.069 0.039 0.080 0.007 �0.138 0.075 0.068 NA NA NA
X2_2482896 0.064 0.027 0.017 0.006 �0.057 0.076 0.453 NA NA NA
X_14636404 �1.768 0.092 0.000 4.794 0.024 0.076 0.751 0.0191 0.091 0.833
X4_15568674 �1.972 0.134 0.000 5.964 0.094 0.075 0.213 NA NA NA
X4_1873297 0.044 0.026 0.086 0.003 0.095 0.071 0.185 0.045 0.026 0.084
X4_15632637 1.960 0.143 0.000 5.892 0.104 0.075 0.169 NA NA NA
X4_13532205 0.064 0.028 0.024 0.006 0.111 0.075 0.143 NA NA NA
X_15820520 �0.014 0.055 0.796 0.000 0.146 0.075 0.054 0.032 0.054 0.552
X_14542103 1.786 0.087 0.000 4.892 0.162 0.075 0.031 0.012 0.084 0.883
X2_13516256.X4_15632637 �3.799 0.268 0.000 5.534 NA NA NA NA NA NA
X2_13516256.X4_15568674 3.753 0.276 0.000 5.401 NA NA NA NA NA NA
X_15820520.X_14636404 �3.771 0.172 0.000 5.453 NA NA NA NA NA NA
X_15820520.X_14542103 3.691 0.172 0.000 5.224 NA NA NA NA NA NA
X_14636404.X4_1873297 �3.534 0.163 0.000 4.789 NA NA NA NA NA NA
X_14636404.X4_13532205 �3.567 0.166 0.000 4.879 NA NA NA NA NA NA
X_14542103.X4_1873297 3.629 0.164 0.000 5.050 NA NA NA NA NA NA
X_14542103.X4_13532205 3.469 0.167 0.000 4.614 NA NA NA NA NA NA

Note: Multiple R-squared: 0.9074, adjusted R-squared: 0.8964.
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were broadly in agreement with those reported in Rockman
et al.’s [12] well-validated studies, showing the biological rele-
vance of iFORM/eQTL. The new insight into epistasis gained by
iFORM/eQTL provides molecular geneticists with next hypothe-
ses to pursue subsequent experiments to understand biology.
As a working example, we randomly chose one transcript
involved in our iFORM/eQTL analysis. However, a complete ana-
lysis of all transcripts collected in Rockman et al. [12], from
which new discoveries can be made, deserves a separate
publication.

A typical eQTL study may not only include a large number of
molecular markers like in a GWAS, but also record tens of thou-
sands of gene transcripts throughout the entire genome. Our
current version of iFORM/eQTL can only take into account one
gene transcript as a response at a time, thus having a limitation
to model the correlation and dependence among different
genes. It is our next step to formulate a multivariate multiple re-
gression model by which to test how an individual predictor,
main effect or epistatic effect, pleiotropically affects correlated
expression profiles of different genes.

Given the complexity of biological phenomena, pair-wise
epistasis may be insufficient to explain phenotypic variation.
Imielinski and Belta [34] argued that high-order interactions
among more than two genes may provide a key pathway toward
complex traits. Three-way interactions have been detected in
trait control [35, 36]. A model for modeling three-way inter-
actions has been developed in a case-control GWAS design [37]
and a genetic mapping setting [38]. It is crucial to extend iFORM/
eQTL to map main effects, two-way epistasis and three-way
epistasis in an eQTL mapping study although no substantial
change is needed in the computational algorithm, except for an
enlarged test set and extra computing time. Our work is based
on a backcross population in which there are only two geno-
types at a locus. The backcross population can facilitate our es-
timation and test of genetic effects owing to a smaller number
of parameters at each locus or locus pair, but its utility is limited
in the F2 design of model systems and natural populations of
outcrossing species such as humans. A more general model of
iFORM/eQTL should consider three genotypes at each locus,
which provides estimates of additive and dominant effects at
each locus and four types of epistasis, i.e. additive � additive,
additive � dominant, dominant � additive and dominant �
dominant, between each pair of loci [27]. Each of these epistatic
types may affect a phenotype through a different pathway.

Although the current implementation of iFORM/eQTL
focuses on SNPs as predictors, it is flexible to include other
types of predictors, such as multi-nucleotide polymorphisms
and indels, given their roles in regulating biological processes.
With continuous falling of sequencing price, we will have desir-
able opportunities to study the dynamic behavior and pattern of
gene expression profiles across time and space scales [39–41].
Many previous studies suggest that gene expression during cell
and organ development may follow a particular form, which
can be quantified by mathematical equations [42]. For example,
abundance of gene expression may change periodically in
human’s brain during circadian clock. Several researchers used
Fourier’s series approximation to model the periodic changes of
gene expression by estimating the period and amplitude of the
cycles [43]. Statistical models for mapping QTLs that regulate
dynamic change of phenotypic traits through mathematical
equations, called functional mapping, have been developed [44,
45] and further have proven to be broadly useful for the genetic
dissection of complex traits [46]. By integrating iFORM/eQTL
into functional mapping, we will be able to map dynamic eQTLs

for gene expression and make a quantitative prediction of tem-
poral and spatial patterns of genetic control by eQTLs. We
packed iFORM/eQTL in R with the source code available at
http://statgen.psu.edu/software.html/ (after the manuscript is
accepted).

Key Points

• The identification of expression quantitative trait loci
(eQTLs) facilitates the precise reconstruction of the
genotype–phenotype map for complex traits or
diseases.

• We implement a variable selection model to map a
comprehensive set of eQTLs and their interactions
from an ultrahigh-dimensional array of genes through-
out the entire genome.

• This implementation builds a computing platform to
illustrate the genetic architecture of gene transcripts.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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